Energy Efficient Cloud Computing: Challenges and Solutions

Burak Kantarci and Hussein T. Mouftah
School of Electrical Engineering and Computer Science
University of Ottawa
Ottawa, ON, Canada
08 September 2011
PART-I: CLOUD COMPUTING
- Cloud computing
- Energy Consumption of Cloud Computing

PART-II: ENERGY-EFFICIENCY IN CLOUD COMPUTING: PROCESSING AND STORAGE
- Energy Savings in High Performance Data Centers (HPDCs)
- Wireless Sensor Network (WSN)-based Thermal Activity Monitoring in HPDCs

PART-III: ENERGY-EFFICIENCY IN CLOUD COMPUTING: TRANSPORT
- Energy-efficient manycast provisioning

PART-IV: CONCLUSION
- Research Challenges and Open Issues
PART I:
CLOUD COMPUTING
What is cloud computing?

- Many definitions of cloud computing exist

“Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort or service provider interaction.”

Cloud Computing

Autonomic Computing

Self-management-capable computer systems

Service-Oriented Computing

Software as a Service

Client-Server Model

Service Provider—Service Requester

Distributed architecture without central coordination

Networked Cluster of High Performance Computers

Computation and storage as a metered service

Powerful computers for critical applications

Utility Computing

Grid Computing

Mainframe Computing

CLOUD COMPUTING

5/30

Kantarci B. and Mouftah H. T.

2011/08/09
Towards “Green” ICT

- Why is energy efficiency important?
 - ICT consumes 4% of the electricity and expected to be doubled (8%)
 - Telecommunication networks contribute a big portion of the CO$_2$ emissions of ICTs
 - L. Kumar and L. Mieritz, “Conceptualizing Green IT and Data Center Power and Cooling Issues”, 2007

GHG emission contribution of the telecom networks
Cloud Computing and Energy Efficiency

- Cloud Computing infrastructure is housed in **Data Centers**
 - US Data Centers consume 1.7%~2.2% of the total electricity consumed in the country (61 billion kWh in 2006, doubled in 2007)
 - Worldwide data centers consume 1.1%~1.5% of all electricity consumed in the world
 - Proper Power Management in the data centers can lead to significant energy savings
 - Virtualization of computing resources
 - Sleep scheduling

- Shared Servers and Storage Units
 - Energy savings possible if users migrate IT services towards remote resources
 - Increase in the network traffic and the associated network energy
 - Will be addressed in PART III

PART II: ENERGY EFFICIENCY IN CLOUD COMPUTING
Energy-Efficiency of Data Centers

• Heat Generation
 • Non uniform workload distribution
 • Heterogeneity of computing hardware

• Heat Extraction
 • Layout of server racks
 • Placement of Computer Room Air-Conditioner (CRAC) unit fans and air vents

• Autonomic Data Center Management
 • Solutions:
 • Thermal and Energy-Aware Resource Provisioning
 • Cooling system Optimization
 • Anomaly Detection
 • Requirements:
 • Continuous processing and analysis of real-time feedback

Kantarci B. and Mouftah H. T.

2011/08/09
Energy-Efficiency of Data Centers

- A key metric to evaluate how “green” is a data center
 - Power Usage Efficiency (PUE)
 \[
 PUE = \frac{P_{\text{process}} + P_{\text{cool}}}{P_{\text{process}}}
 \]
 - Data Center Efficiency (DCE)
 \[
 DCE = \frac{P_{\text{IT Equipment}}}{P_{\text{Data Center}}}
 \]
 - A good DCE is 0.625
 - A reasonable DCE target is 0.5

 C. Belady, Hewlett Packard

Source: Google
Energy-Efficiency of Data Centers

- Job Management in Data Centers

No cooling and thermal-awareness

Cooling and thermal-aware job management
Energy-Efficiency of Data Centers

Coordinated job and cooling management in Data Centers
Energy-Efficiency of Data Centers

- Temporal Job Scheduling
 - First Come First Serve (FCFS)
 - Earliest Deadline First (EDF)
- Spatial Job Scheduling
 - Thermal-Aware Job Scheduling
 - Minimum Re-circulated Heat (MRH)
 - Cooling-aware Job Scheduling
 - Highest Thermostat Setting (HTS)

A. Banerjee et al., Integrating cooling awareness with thermal aware workload placement for HPC data centers, *Sustainable Computing: Informatics and Systems*, vol 1., Issue 2, pp.134-150, 2011
Energy-Efficiency of Data Centers

- Highest Thermostat Setting (HTS): A Cooling and Thermal-Aware Workload Placement scheme
 - Temporally schedule the jobs
 - EDF / FCFS
 - Server Ranking
 - According to the requirement of thermostat set temperature to meet the redline for 100% utilization
 - Spatial scheduling
 - Place jobs to the available servers with the lowest rank
 - Obtain power distribution vector P_h
 - Set thermostat setting to the highest possible value (T_{th}^{high})
Energy-Efficiency of Data Centers

- Determining the highest thermostat value

\[
(T_{th}^{\text{high}})^{\text{max}} = F^{-1}T_{red} - \left[\frac{p_{h}^{\text{comp}} - p_{ex}^{\text{low}}}{r_{room}} \cdot t_{sw} - \frac{p_{ex}^{\text{low}}}{r_{ac}} \right] - F^{-1} D P_{h}
\]

- \(r_{ac} \): Thermal capacity of air flowing out of the CRAC
- \(r_{room} \): Thermal capacity of air flowing in the data center room

\[
\left(l_{i} \cdot r_{ac} + \sum_{j=1}^{n} a_{ji} \cdot r \right) T_{i}^{\text{in}}(t) \cdot dt = l_{i} \cdot r_{ac} \cdot T_{\text{sup}}^{\text{sup}}(t) \cdot dt + \sum_{j=1}^{n} a_{ji} \cdot r \cdot T_{j}^{\text{out}}(t) \cdot dt
\]

Heat input to chassis \(i \) in time \(dt \) = the input from CRAC at chassis \(i \) in time \(dt \) + re-circulated heat to chassis \(i \) from all other chassis in time \(dt \)

\[
\left(l_{i} \cdot r_{ac} + \sum_{j=1}^{n} a_{ji} \cdot r \right) T_{i}^{\text{in}}(t) \cdot dt + P_{i}(t) \cdot dt = r \cdot T_{j}^{\text{out}}(t) \cdot dt
\]

Heat input to chassis \(i \) in time \(dt \) + Heat generated from chassis \(i \) in time \(dt \) = Heat output of chassis \(i \) at time \(dt \)

\(p_{h}^{\text{comp}} \): Total computing power at the period \(h \)
\(p_{ex}^{\text{low}} \): Power extracted by CRAC

Vectorize:
\[
T_{\text{in}}^{\text{in}}(t) = FT^{\text{sup}}(t) + DP(t)
\]
Energy-Efficiency of Data Centers

- **RACNet**: Wireless Sensor Networks (WSNs) in Data Centers
 - Wireless sensor network developed for Microsoft Research Data Center Genome project
 - Provides fine-grained and real-time visibility to data center cooling behaviour
 - ~700 sensors deployed in a MMW data center
 - Hierarchical topology
 - Master and slave sensor nodes
 - Large-scale sensor network
 - Multiple slave sensors for collecting temperature, humidity
 - Several master sensors providing connectivity
 - Uses IEEE 802.15.4 radios

Energy-Efficiency of Data Centers

Cold-aisle heat map

Hot-aisle heat map

An instance of the heat map generated from 24 sensors in the front and back of a row in the Genome Data Center
PART III: ENERGY EFFICIENCY IN CLOUD COMPUTING
Energy-Efficient Transport of Cloud Services in the Internet Backbone

- Conventional network services
 - Unicast
 - \((s, d)\)
 - Multicast
 - \((s, D)\)

- Cloud computing services
 - Anycast
 - \((s, d_i \subseteq D)\)
 - Manycast
 - \((s, D_k \subseteq D)\)
Energy-Efficient Transport of Cloud Services in the Internet Backbone

- **Transport medium:**
 - Wavelength Routed (WR) Network
 - During off-peak hours, WR nodes can enter the *sleep* mode
 - Can add traffic
 - Can drop traffic
 - No pass-through traffic
- **Demand Provisioning**
 - Lightpath
 - Light-tree

Problem:
Energy-Efficient Light-Tree (EELT) selection
Energy-Efficient Transport of Cloud Services in the Internet Backbone

- Optimization Model for EELT

Objective

\[
\begin{align*}
\text{maximize} & \quad \sum_i \chi_i & \text{Maximize the number of sleeping nodes} \\
\text{min} & \quad \text{Energy} & \text{Minimize total energy consumption} \\
\text{min} & \quad \max\{\sum_w \lambda_{w}^{i,j}\}_{i,j} & \text{Minimize maximum resource (channel) consumption}
\end{align*}
\]
Solving a manycast-based ILP model may lead to significantly long runtimes.

Any faster solution?

Heuristics:

Evolutionary Algorithm for Green Light-tree Establishment (EAGLE)

Energy-Efficient Transport of Cloud Services in the Internet Backbone

- **Evolutionary Algorithm for Green Light-tree Establishment (EAGLE)**

 Sort the manycast demands in decreasing order

 Find an initial solution space I

 Solution Space $P = I$

 End condition reached?

 NO

 Compute a fitness function for each solution in P

 Select two candidate solutions in P w.r.t *fitness proportionate*

 Crossover on two solutions. Obtain new two individuals

 Channel assignment on the new individuals

 Mutate new individuals with probability of γ

 New solutions valid?

 NO

 Age Solutions in P

 YES

 NO

 Add solutions to P
Energy-Efficient Transport of Cloud Services in the Internet Backbone

- **Fitness Functions in EAGLE**

 \[F_{\text{Max-Sleep}} = \sum_i \chi_i \]
 Maximize the number of sleeping nodes

 \[F_{\text{Min-Channel}} = \frac{1}{\max \{ \sum_w \lambda_{i,j}^w \}} \]
 Minimize the maximum channel index

 \[F_{\text{Min-Energy}} = \frac{1}{\text{Energy}} \]
 Minimize the total consumed energy

\[\text{Energy} = \sum_i \sum_j \left(\left\lfloor \frac{\text{dist}(i, j)}{\Delta_{\text{span}}} \right\rfloor - 1 \right) \cdot E_{\text{EDFA}} \]
\[+ \sum_i \sum_j \sum_w \lambda_{i,j}^w \cdot E_{\text{MEMS}} + \sum_i \beta_i \cdot E_{\text{ON}} \]

\(\beta \) of the idle power is consumed in the sleep mode
Cloud service demands arrive in four time zones:
- EST, CST, MST, PST

- Size of the destination set: \(\{3, 4\} \)
- Crossover prob. 0.20
- Mutation ratio: 0.01
- Solution space: 100 solutions
Energy-Efficient Transport of Cloud Services in the Internet Backbone

- Energy consumption of EAGLE throughout the day
PART IV:
RESEARCH CHALLENGES AND OPEN ISSUES
Conclusion and Future Directions

- **Energy Efficient cloud computing**
 - Balance between process, storage and transport
- **Processing and Storage**
 - Workload placement
 - Thermal-aware
 - Cooling-aware
 - Thermal-and-cooling-aware highest thermostat setting
 - Thermal activity monitoring of data centers by WSNs
- **Transport**
 - Energy-efficient anycasting/manycasting of cloud service demands
Further reading

- B. Kantarci, H. T. Mouftah, "Energy-Efficient Cloud Services over Wavelength-Routed Optical Transport Networks", in Proc. of IEEE GLOBECOM- Selected Areas in Communications Symp.- Green Communication Systems and Network Track, Dec. 2011, Houston, TX, USA (accepted).

Thank you for your attendance

For further info:

kantarc@site.uottawa.ca, mouftah@site.uottawa.ca