Energy-efficient Machine-To-Machine Communications:
State of the art, challenges and directions

Burak Kantarci and Hussein T. Mouftah
School of Electrical Engineering and Computer Science,
University of Ottawa,
ON, Canada
{kantarci, mouftah}@site.uottawa.ca
13 December 2012
WiSense Seminar # 90
What is an M2M Network?
Why M2M Networks?

Data flow between subscriber stations and BSs in a cellular network by eliminating the human interaction

Internetworking of M2M Networks

 Millions of M2M devices

Internet of Things (IoT)

• Application areas:
 • Healthcare
 • Smart Grid
 • Metering services
 • etc
Challenges in M2M Networks

- Subscription control for M2M devices
- Overload control on the BSs due to massive access by the M2M devices
- Energy-efficiency
 - Not a major concern in conventional cellular networks
 - M2M devices run on batteries
 - M2M network reliability is dependent on the battery lifetime

Recall: Most critical requirements for the IoT
- Low delay
- High reliability
- Low-power operation
Energy-efficiency in M2M Networks

- Energy efficient....
 - Massive access control
 - Resource allocation
 - Relaying
 - Reporting
 - Routing
 - QoS-guaranteed routing
 - Routing & channel scheduling
 - Retransmission-aware routing
 - Sleep scheduling
 - Harvesting
 - Security
Energy-efficient massive access control

Grouping and coordinator-based solutions

- A single cell with N M2M devices
- Objective:
 - Form G groups minimizing the total energy consumption

Overview:
- Target: M2M core
- Radio Access Network Technology: IEEE 802.16m
- WSN in the M2M device domain
- A centralized solution

Tu et al., “Energy-efficient algorithms and evaluations for massive access management in cellular based machine to machine communications,” VTC-Fall, Sep. 2011
Energy-efficient massive access control

- Grouping and coordinator-based solutions (Cont ‘d)
 - Grouping constraints

\[E^j_{i}^{\neq c} = \left[\frac{S}{(R_{t1}(M^c_i, M^j_i))} \right] \cdot P \quad \rightarrow \quad \text{Energy consumption of a non-coordinator device in } G_i \]

\[E_i = \sum_{j \neq c} E^j_{i} + \left[\frac{S}{(R_{t2}(M^c_i, BS))} \right] \cdot P \cdot N_i \quad \rightarrow \quad \text{Total energy consumption in } G_i \]

\[R_{t1}(M^c_i, M^j_i) = B_{t1} \cdot \log_2 \left[1 + \left(P \cdot \left(h_{t1}(M^c_i, M^j_i) \right)^2 \right)/\left(N_0 \cdot B_{t1} \right) \right] \quad \rightarrow \quad \text{Achievable bitrate in } \ell_1\text{-type links} \]

\[R_{t1}(M^c_i, BS) = B_{t2} \cdot \log_2 \left[1 + \left(P \cdot \left(h_{t2}(M^c_i, BS) \right)^2 \right)/\left(N_0 \cdot B_{t2} \right) \right] \quad \rightarrow \quad \text{Achievable bitrate in } \ell_2\text{-type links} \]

Tu et al., “Energy-efficient algorithms and evaluations for massive access management in cellular based machine to machine communications,” VTC-Fall, Sep. 2011
Energy-efficient massive access control

Grouping and coordinator-based solutions (Cont ‘d)

– Split the problem into two sub-problems
 • Subproblem-1: Group the M2M devices
 • Subproblem-2: Assign coordinator to each group

Group M2M devices (K-Means)

Assign coordinator to each group (Initially randomly selected)

Iterate until total energy converges to a minimum

Tu et al., “Energy-efficient algorithms and evaluations for massive access management in cellular based machine to machine communications,” VTC-Fall, Sep. 2011
Energy-efficient massive access control

At each iteration:

• Given centroids of each group
• Group selection criteria for a non-coordinator M2M device:

\[M_k^j \in G_k \mid h_{\ell_1}(M_k^j, M_k^c) \leq h_{\ell_1}(M_k^j, M_m^c), \quad \forall m \]

Tu et al., “Energy-efficient algorithms and evaluations for massive access management in cellular based machine to machine communications,” VTC-Fall, Sep. 2011
Energy-efficient massive access control

Tu et al., “Energy-efficient algorithms and evaluations for massive access management in cellular based machine to machine communications,” VTC-Fall, Sep. 2011

Using the M2M device groups, select new coordinators for each group
Energy-efficient massive access control

Run K-Means to cluster the non-coordinator M2M devices according to the centroids.

The iteration stops when total energy consumption converges to a global minimum.

\[M^j_k \in G_k | h_{\ell_1}(M^j_k, M^c_k) \leq h_{\ell_1}(M^j_k, M^c_m), \quad \forall m \]

Tu et al., “Energy-efficient algorithms and evaluations for massive access management in cellular based machine to machine communications,” VTC-Fall, Sep. 2011
Energy-efficient massive access control

- Grouping and coordinator-based solutions

- Subproblem-2: Assigning coordinator to each group

 - Arithmetic means of channel gains (AM-CG)
 \[M_k^c = \arg \max_{M_k^i} \left\{ \left(1/(n-1) \right) \cdot \sum_{j \neq i} h_{\ell_1}(M_k^i, M_k^j) \right\}, \ \forall k \]

 - Geometric means of channel gains (GM-CG)
 \[M_k^c = \arg \max_{M_k^i} \left\{ \frac{1}{\sqrt[n-1]{\prod_{j \neq i} h_{\ell_1}(M_k^i, M_k^j)}} \right\}, \ \forall k \]

 - Select M2M device with max. channel gain in the link to the BS

 - Modified arithmetic means of channel gain (MAM-CG)
 \[M_k^c = \arg \max_{M_k^i} \left\{ \left(1/(n-1) \right) \cdot \sum_{j \neq i} h_{\ell_1}(M_k^i, M_k^j) + \omega \cdot h_{\ell_2}(M_k^c, BS) \right\}, \ \forall k \]

 - Modified geometric means of channel gain
 \[M_k^c = \arg \max_{M_k^i} \left\{ \frac{1}{\sqrt[n-1]{\prod_{j \neq i} h_{\ell_1}(M_k^i, M_k^j) + \omega \cdot h_{\ell_2}(M_k^c, BS)}} \right\}, \ \forall k \]

- Optimum energy consumption (OEC)

- K-maximal channel gains (KMAX-CG)

Tu et al., “Energy-efficient algorithms and evaluations for massive access management in cellular based machine to machine communications,” VTC-Fall, Sep. 2011

Significant energy savings can be achieved (up to 25%)
Energy-efficient massive access control

Energy-efficient Power & Resource Allocation
- Group M2M devices and assign coordinators.
- Calculate initial values of Energy per bit (Epbd)

\[
Epbd_j = \frac{r_j^c}{(P_j^c + P_{\text{circuit}})} = \frac{\log_2(1 + P_j^c \cdot |h_{\ell_2}(M_j^c, BS)|^2 / N_0 / B_{\ell_2})}{P_j^c + P_{\text{circuit}}}
\]

Energy per bit

\[
P_j^c^{*} = 1/(Epbd_j \cdot \ln 2) - \left(N_0 \cdot B_{\ell_2} \right) / |h_{\ell_2}(M_j^c, BS)|^2
\]

Optimal transmitting power in an OFDMA frame

Energy-efficient massive access control

Energy-efficient Power & Resource Allocation
– Assign subcarrier for each coordinator
 • Assumption: Coordinators have different channel gains on different subcarriers
– In each iteration, for each unassigned subcarrier-coordinator tuple, calculate the following parameters:

\[p_{jn}^* = \max\left(\left(B_c \cdot E \log_2(b_j(t - 1)) / \ln 2 - \left(N_0 \cdot B_c \right) / h_{\ell_2,n}(M_j^c, BS, t) \right)^2, 0 \right) \quad \text{Optimal transmission power} \]

\[r_{jn}^* = \max\left(B_c \cdot \log_2 \left([E \log_2(b_j(t - 1)) \cdot h_{\ell_2,n}(M_j^c, BS, t)]^2 / [N_0 \cdot \ln 2] \right), 0 \right) \quad \text{Optimal achievable bitrate} \]

Energy-efficient massive access control

Energy-efficient Power & Resource Allocation

How to assign subcarrier to a coordinator?

- For a subcarrier, select the coordinator leading to the minimum energy consumption

\[
I^n_{c_j} = \begin{cases}
1 & M^n_j = \arg\min_{c_l \in C} \frac{D_{c_l} (p_{c_l}^n(t) + p_{cir})}{R_{c_l} (t-1)} \\
0 & \text{Otherwise}
\end{cases} \quad \forall n
\]

Overview:
- Target: M2M core
- Radio Access Network: OFDM
- WSN or AHN in the M2M device domain
- A centralized solution
- Suboptimal results when compared to the optimal solutions under frequency selective fading
- Optimal solutions are possible with exhaustive searching

START

- Cluster the M2M devices
- Select coordinator nodes
- Set initial values of \(E_{pb_j}^c \)

\(n: \) Subcarrier ID, \(n \leftarrow 1 \)

\(n > N \)

YES

- For each coordinator, \(M_j^c \) with \(D_j^c > 0 \):
 - Compute \(p_{jn}^c (t) \) and \(r_{jn}^c (t) \)
 - Assign subcarrier \(n \), and allocate power
 - Update total data for assigned coordinator, \(c \):
 - Update energy consumption of assigned coordinator
 - \(n \leftarrow n + 1 \)

NO

- Update \(P_j^c(t), R_j^c(t), f_j^c(t) \) for all coordinators

\(D_j^c > 0 \) for all \(c \)

\(t \leftarrow t + 1 \)

END
Energy-efficient relaying in M2M Networks

Overview:
- Target: M2M core / M2M Device Network
- Radio Access Network: IEEE 802.16p
- WSN or AHN in the M2M device domain
- A distributed solution
- Smart metering scenario
- Link quality improvement and energy savings

- L different types of meters
- Packet transmission duration: T^{ON}_i
- Duration between two packet transmissions is uniformly distributed
- Edge M2M devices experience self-similar packet arrival
- Relay experiences Poisson packet arrival
- Relay can eavesdrop the transmission channel at the aggregation point
- Relay can store a single packet for possible retransmission to the BS

Energy-efficient reporting

Overview:
• Target: M2M Device Domain
• Radio Access Network: Not considered
• WSN in the M2M device domain
• Centralized and/or distributed solutions
• Objective: Reporting VALID data with minimum energy

Formal expression of a valid data:
\[\theta_m: \text{Monitoring period (MP) for the sensed data of type-} \text{-m} \]

\[t + (i - 1) \cdot \theta_m \leq t_x < t'_x \leq t + i \cdot \theta_m \]

Energy-efficient reporting

- **M2M Gateway:**
 - Obtain a transmission schedule for the M2M devices
 - Ensure maximum energy savings
 - Ensure maximum valid data delivery

Value of MP durations:
\[
\Theta_m = \alpha_m \cdot \Theta_1, \quad \forall m \in \{1, ..., \mathcal{K}\}
\]

Gateway defines a cycle with length:
\[
L_c = \text{lcm}(\alpha_1, ..., \alpha_\mathcal{K}) \cdot \Theta_1
\]

X: A 3D-array with binary elements
\[
X_{[m][n][k]} = 1 \text{ if node-k is scheduled to transmit its sensed data of type-m in the transmission unit } n \text{ within the next cycle}
\]

Energy-efficient reporting

- **M2M Device-i:**
 - Sensing set S_i.

- **M2M gateway:**
 - Uses the union of the sensing sets $\tilde{S} = \{S_1, \ldots, S_i, \ldots, S_M\}$
 - Find a subset of \tilde{S} s.t. Cover the complete sensing set, S.
 - Run a greedy algorithm
 - Energy-efficient Centralized Reporting (ECR)

Energy-efficient reporting

Energy-efficient reporting

- **M2M gateway:**
 - Broadcast the transmission schedule, X

- **M2M device receiving X:**
 - Stays in the active mode
 - Calculates its sensing set for each transmission unit in the next cycle
 - For the transmission units, $X[m][n][k]=0$, M2M device-k stays in the sleep mode
 - At the end of the cycle, wakes up to listen for the broadcast of X.

Sleep scheduling in M2M networks

- Existing power saving solutions in 3GPP
 - In Access Stratum (AS)
 - Longer paging cycles to avoid frequent monitoring of the paging channels
 - In Non-Access Stratum (NAS)
 - Longer timer helps avoiding frequent Location Area Updates (LAU) and Routing Area Updates (RAU)
- How to reduce power consumption in M2M device activities, network operations and signalling?

Sleep scheduling in M2M networks

- An extended idle mode for low-mobility devices

Sleep scheduling in M2M networks

- A new paging mechanism is proposed
 - Existing paging schemes cannot distinguish M2M devices and H2H devices in a paging occasion

- Three layers
 - Paging occasion
 - Use M2M group IDs
 - Paging target
 - If individual or group ID cannot be found, paging mechanism stops for the M2M device
 - Paging reason
 - Call setup request
 - M2M report
 - M2M system update

Energy-Efficiency and Security in M2M Networks...

- Energy-efficiency and security in M2M networks
 - Most components in the M2M device domain are unattended
 - Vulnerability
 - The ease of eavesdropping in wireless medium
 - Heterogeneous nature of the M2M device domain
 - some nodes may not participate asymmetric cryptographic operations due to their power and resource limitation

Three types of nodes:
- **Type-1**: Unable to support PKC operations
- **Type-2**: Plain text encryption, signature verification
- **Type-3**: High energy, advanced computing power and storage facility

A sensor node of Type-1

B: remote server

A wants to establish a session key with B

A selects the proxy nodes to perform PKC operations

The proxy nodes establish secured connections with B.

A prepares the shared secret, splits it among the proxy nodes

The proxy nodes transmit the shared secret to B in a secure way

B validates the messages received through multiple proxy nodes, assembles the validated messages to recover the master key

A and B verify B has received the same master key with A

B provides the list of proxy nodes participated in PKC operations so that A can exclude the non-participating nodes in the next round
Summary & Conclusion

- Energy-efficiency is a key challenge in M2M networks as M2M devices run on limited battery power

- Solutions covered
 - Massive access control
 - Power & Resource Allocation
 - Cooperative communications
 - Energy-efficient reporting
 - Sleep scheduling
 - Energy-efficient security

- Open issues
 - QoS provisioning
 - Novel security schemes in healthcare, metering and smart grid services
 - Energy saving protocols in the M2M core
What we have not covered...

- Energy-efficient routing in M2M networks. Basically;
 - Energy-efficient routing in WSNs
 - Energy-efficient routing in AHNs

- Energy harvesting for M2M devices.
 - Can be covered by the smart grid research

- Energy-efficiency in the context of “green communications”
 - Energy source-awareness in M2M core is a possible future direction
In press....